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Abstract. Reactive nitrogen (Nr =NO, NO2, HONO) and
volatile organic carbon emissions from oil and gas extraction
activities play a major role in wintertime ground-level ozone
exceedance events of up to 140 ppb in the Uintah Basin in
eastern Utah. Such events occur only when the ground is
snow covered, due to the impacts of snow on the stability
and depth of the boundary layer and ultraviolet actinic flux
at the surface. Recycling of reactive nitrogen from the pho-
tolysis of snow nitrate has been observed in polar and mid-
latitude snow, but snow-sourced reactive nitrogen fluxes in
mid-latitude regions have not yet been quantified in the field.
Here we present vertical profiles of snow nitrate concentra-
tion and nitrogen isotopes (δ15N) collected during the Uin-
tah Basin Winter Ozone Study 2014 (UBWOS 2014), along

with observations of insoluble light-absorbing impurities, ra-
diation equivalent mean ice grain radii, and snow density that
determine snow optical properties. We use the snow optical
properties and nitrate concentrations to calculate ultraviolet
actinic flux in snow and the production of Nr from the pho-
tolysis of snow nitrate. The observed δ15N(NO−3 ) is used to
constrain modeled fractional loss of snow nitrate in a snow
chemistry column model, and thus the source of Nr to the
overlying boundary layer. Snow-surface δ15N(NO−3 ) mea-
surements range from −5 to 10 ‰ and suggest that the local
nitrate burden in the Uintah Basin is dominated by primary
emissions from anthropogenic sources, except during fresh
snowfall events, where remote NOx sources from beyond the
basin are dominant. Modeled daily averaged snow-sourced
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Nr fluxes range from 5.6 to 71× 107 molec cm−2 s−1 over
the course of the field campaign, with a maximum noontime
value of 3.1× 109 molec cm−2 s−1. The top-down emission
estimate of primary, anthropogenic NOx in Uintah and Duch-
esne counties is at least 300 times higher than the estimated
snow NOx emissions presented in this study. Our results sug-
gest that snow-sourced reactive nitrogen fluxes are minor
contributors to the Nr boundary layer budget in the highly
polluted Uintah Basin boundary layer during winter 2014.

1 Introduction

Ozone (O3) has adverse respiratory effects, is an effective
greenhouse gas (UNEP, 2011), and, through formation of
the hydroxyl radical, influences the oxidizing capacity of
the atmosphere (Thompson, 1992). Ozone precursors include
volatile organic compounds (VOCs) emitted from vegeta-
tion, biomass burning, and fossil fuel combustion (Guen-
ther et al., 1995; Warneke et al., 2014) and nitrogen oxides
(NOx =NO+NO2) emitted from fossil fuel combustion,
biomass burning, soil microbial activity, lightning, and pho-
tochemical reactions in snow (Delmas et al., 1997; Grannas
et al., 2007; Logan, 1983). Maximum boundary layer O3
concentrations are typically observed during the summer in
major cities, where O3 precursors are abundant, and when
conditions favor efficient O3 production (high ultraviolet,
UV, radiation) and air stagnation. High O3 concentrations
in the boundary layer exceeding 100 ppbv were measured
in winter 2005 in the Upper Green River basin in rural
Wyoming (Schnell et al., 2009), which is well above the cur-
rent Environmental Protection Agency (EPA) National Am-
bient Air Quality Standard (NAAQS) 8 h average limit of
70 ppbv. High wintertime O3 episodes have also been ob-
served in the Uintah Basin in rural Utah (Martin et al., 2011),
and in both basins, these O3 episodes only occur when the
ground is snow covered (Oltmans et al., 2014). The Upper
Green River basin and the Uintah Basin are regions of major
oil and gas development, and the production of oil and natu-
ral gas in the Upper Green River basin and the Uintah Basin
is expected to increase through at least 2020 (US EIA, 2014).

These wintertime high O3 episodes motivated a series of
field campaigns, including the Upper Green Winter Ozone
Study (UGWOS 2011, UGWOS 2012) and the Uintah Basin
Winter Ozone Study (UBWOS 2012, UBWOS 2013, UB-
WOS 2014). Results from these field campaigns (Gilman et
al., 2013; Helmig et al., 2014; Oltmans et al., 2014; Warneke
et al., 2014; Schnell et al., 2009) and subsequent modeling
studies (Ahmadov et al., 2015; Carter and Seinfeld, 2012;
Edwards et al., 2013, 2014; Field et al., 2015; Rappenglück
et al., 2014) reveal that emissions of NOx and VOCs from oil
and gas extraction, combined with stagnant meteorological
conditions, enhanced boundary layer UV radiation due to the
high UV albedo of snow (Warren et al., 2006), and reduced

O3 loss through surface deposition due to snow cover (Ah-
madov et al., 2015), trigger high boundary layer O3 episodes
in these basins. Ozone exceedance events occur only when
the ground is snow covered because snow aids in the forma-
tion and maintenance of a stable air mass and reflects UV ra-
diation upwards into the boundary layer. Ozone exceedance
events end when stable boundary layers are disrupted by the
passage of storm fronts, which often deposit snow. Model-
ing studies were used to determine whether O3 formation in
these regions is NOx-sensitive or VOC-sensitive, which is
necessary information for the enactment of effective regula-
tions aimed to reduce boundary layer O3 abundance. Model-
ing results from Edwards et al. (2014) suggest that the Uin-
tah Basin is in an O3 formation regime on the boundary be-
tween VOC-sensitive and NOx-sensitive, and modeling re-
sults from Ahmadov et al. (2015) suggest that the Uintah
Basin regime is VOC-sensitive. Modeling results presented
in Edwards et al. (2014) suggest that the dominant radical
sources in the Uintah Basin are carbonyl compounds (85 %),
with smaller inputs from HONO, O3, and nitryl chloride
(ClNO2) photolysis.

Atmospheric measurements in the Uintah Basin dur-
ing UBWOS2012, UBWOS2013, and UBWOS2014
reveal that the total reactive nitrogen abundances (NOy
=NO+NO2+HNO3+PAN+N2O5+NO3+ClNO2+

organic nitrates) are highest (12–24 ppbv) in 2013 due to
persistent shallow inversion layers triggered by stagnant air
masses and snow cover, lowest in 2012 (4–9 ppbv) when
no snow covered the ground, and in between (8–18 ppbv)
in winter 2014, with the highest NOy values generally in
midday (Wild et al., 2016). In 2013, HNO3 accounted for
nearly half of total NOy , while in 2012 N2O5 and ClNO2
were larger components of total NOy compared to HNO3
(Wild et al., 2016). Interestingly, atmospheric NOx mixing
ratios are similar in all three years, with diurnal averages
ranging from 2 ppbv during the night to 10 ppbv during the
day (Wild et al., 2016). The NOx /NOy ratio, indicative
of the rate of oxidation of reactive nitrogen, was highest in
2013 and lowest in 2012, with intermediate values in 2014
(Wild et al., 2016). HO2NO2 measurements range from 0
to 2.4 ppbv in 2013 and ∼ 0 to 0.4 ppbv in 2014 (Veres et
al., 2015) and are generally positively correlated with snow
nitrite concentrations, suggesting that HO2NO2 deposition
may be a source of snow nitrite (Veres et al., 2015).

In addition to aiding in the formation and maintenance of
a stable air mass with enhanced UV radiation, snow may
also recycle reactive nitrogen oxides (Nr=NOx , HONO) be-
tween the snow surface and the overlying atmosphere, effec-
tively increasing the atmospheric lifetime of Nr. The major
sink of Nr in the atmosphere is the formation and deposition
of nitrate (particulate NO−3 plus HNO3(g)). When nitrate is
deposited to snow, its photolysis serves to recycle Nr to the
overlying boundary layer (Grannas et al., 2007; Honrath et
al., 2000). This snow-sourced Nr can then be re-oxidized to
nitrate and re-deposited to the snow surface. The recycling
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of nitrogen between the snow surface and boundary layer can
occur many times, resulting in the continuous recycling of Nr
during sunlit conditions.

The photolysis of nitrate occurs in the liquid-like region
(LLR) in or on ice grains (Domine et al., 2013) in the top
snow layer where UV radiation is present, which is known
as the snow photic zone. Snow nitrate photolyzes at wave-
lengths (λ)= 290–345 nm to produce aqueous-phase nitro-
gen dioxide (NO2) or nitrite (NO−2 ) according to Reac-
tions (R1) and (R2) (Grannas et al., 2007; Mack and Bolton,
1999; Meusinger et al., 2014).

NO−3 (aq)+hν(+H+)→ NO2(aq)+OH(aq) (R1)

NO−3 (aq)+hν→ NO−2 (aq)+O(3P)(aq) (R2)

The measured quantum yields (φ) for Reaction (R1) range
from 0.003 to 0.6 molec photon−1 at 253 K (Chu and Anas-
tasio, 2003; Meusinger et al., 2014; Zhu et al., 2010) and is
likely influenced by the location of nitrate within ice grains.
The NO2 produced in Reaction (R1) quickly evaporates due
to its low solubility and can be transported to the overlying
atmosphere. The nitrite produced in Reaction (R2) is rapidly
photolyzed at longer wavelengths (λ= 290–390 nm) (Reac-
tion R3).

NO−2 (aq)+hν(+H+,aq)→ NO(aq)+OH(aq) (R3)

Nitrite can also react with OH or H+ in the LLR to produce
aqueous-phase NO2 and HONO (Grannas et al., 2007):

NO−2 (aq)+OH(aq)→ NO2(aq)+OH−(aq), (R4)

NO−2 (aq)+H+(aq)→ HONO(aq). (R5)

HONO can rapidly photolyze in the LLR to produce
aqueous-phase NO and OH (Anastasio and Chu, 2009);
due to its short lifetime, the aqueous-phase OH remains in
the LLR, but the aqueous-phase NO can be transferred to
the gas phase and ultimately be released into the bound-
ary layer. Under acidic conditions (pka< 2.8), aqueous-
phase HONO can also be transferred to the gas phase
(HONO(aq)←→HONO(g)) (Anastasio and Chu, 2009) and
released into the boundary layer, where it can photolyze to
produce gas-phase NO and OH (Zhou et al., 2001).

Nitrate nitrogen isotopes (δ15N(NO−3 )) in the air and
snow can provide useful information about snow photo-
chemistry, specifically, the degree of photolysis-driven recy-
cling and loss of nitrate from the snow. Nitrogen isotope ra-
tios are expressed as δ15N, where δ = Rsample/Rreference− 1,
R=15N/14N, and N2-air is the reference material. Nitrate
photolysis in snow is a mass-dependent process and is as-
sociated with a large fractionation constant (ε) of −47.9 ‰
at wavelengths shorter than 320 nm (Berhanu et al., 2014).
Nitrate photolysis provides the boundary layer with a source
of Nr that is highly depleted in 15N, leaving highly enriched
δ15N(NO−3 ) deeper in the snow. Snow-sourced nitrate that

is redeposited to the snow surface is lighter than the re-
maining nitrate in the snow, leading to δ15N(NO−3 ) values
that become more enriched with increasing depth within the
snow photic zone. δ15N(NO−3 ) values in the atmosphere are
also influenced by the relative importance of different NOx
sources (see Felix and Elliott, 2014, for a summary). For ex-
ample, the atmospheric δ15N signature from anthropogenic
NOx sources, such as combustion of fossil fuels, ranges from
−19.0 to 25.0‰ (Felix et al., 2012; Walters et al., 2015).
The δ15N signature from soil microbial activity is generally
lower than that of anthropogenic activity and ranges from
−50 to −20 ‰ (Felix and Elliott, 2014). Observations of at-
mospheric δ15N(NO−3 ) in non-polluted, mid-latitude regions
range from −6 to −2 ‰, while δ15N(NO−3 ) values measured
in polluted regions range from 0 to 6 ‰ (Morin et al., 2009).
In addition, atmospheric δ15N(NO−3 ) is influenced by NOx
cycling (Freyer et al., 1993; Walters et al., 2016), NO2 oxi-
dation (Walters and Michalski, 2015), and the partitioning of
nitrate between its gas and particulate phases (Heaton et al.,
1997).

In this study, we investigate the importance of snow pho-
tochemistry as a source of reactive nitrogen oxides to the
boundary layer in the Uintah Basin using chemical, isotopic,
and optical measurements from the snow collected during the
UBWOS 2014 campaign. In Sect. 2 we describe the field,
laboratory, and modeling techniques used in this study. In
Sect. 3 we present the chemical and optical measurements
made during UBWOS 2014 and model-calculated fluxes of
snow-sourced Nr. In Sect. 4 we estimate the contribution of
snow-sourced Nr to the Nr burden in the Uintah Basin bound-
ary layer.

2 Methods

2.1 Field and laboratory observations

2.1.1 UBWOS 2014 field site description and
meteorological conditions

UBWOS 2014 occurred from 17 January to 13 Febru-
ary 2014 at the Horsepool field-intensive site (40.1◦ N,
109.5◦W) in the Uintah Basin, roughly 55 km south of Ver-
nal, Utah. There are over 10 000 oil and natural gas wells
in the basin connected by a series of dirt roads. The me-
teorological conditions were relatively constant for most of
the campaign; wind speeds ranged from 1 to 3 m s−1 and of-
ten originated from the southwest. Sky conditions were clear,
temperatures ranged from 258 to 275 K, and boundary layer
heights generally ranged from 25 to 150 m. There were a few
cloudy days (29 January–4 February, 10 February) during the
campaign and the last several days experienced temperatures
above freezing. Daily maximum boundary layer O3 mixing
ratios ranged from 45 to 90 ppb, and the campaign-averaged
daily-maximum boundary layer O3 mixing ratio was 61 ppb.

www.atmos-chem-phys.net/16/13837/2016/ Atmos. Chem. Phys., 16, 13837–13851, 2016



13840 M. Zatko et al.: Snow-sourced reactive nitrogen flux in the Uintah Basin

Snow covered the ground throughout the duration of the
campaign and ranged in depth from 10 to 30 cm, depend-
ing on how snow was redistributed by wind after deposition.
The snow was deep enough to cover some of the lowest-
lying vegetation, but branches from bushes were still visible.
Three snow events occurred before the campaign, one event
on 4 December, which deposited most of the snow (19 cm),
and two smaller events on 8 and 19 December, which de-
posited roughly 3 and 1 cm of snow, respectively. There was
a distinct crust layer roughly 4 cm below the snow surface,
providing evidence of surface melting between the later two
snowfall events. The temperature difference between the soil
and the air was at least 15 K for several weeks, allowing
vapor to redistribute through the snow, leading to the for-
mation of large hoar crystals (radiation equivalent mean ice
grain radii (Hansen and Travis, 1974) (re)> 1200 µm) at all
depths in the snow. There was one major snow event dur-
ing the campaign from 30 through 31 January that deposited
roughly 5 cm of fresh snow (re ∼ 100 µm). There were two
smaller snow events on 4 and 10 February. On 4 February
there was no measurable snow accumulation and during the
early morning hours of 10 February there was 2 cm of fresh
snow that subsequently melted several hours after sunrise.
Figure S3b in the Supplement summarizes daily snow accu-
mulation before and during the campaign.

2.1.2 Snow pit measurements and snow sample
preparation

Twelve snow pits were dug approximately every 2 to 3 days
during the campaign. Snow pits were dug from the snow sur-
face to about 1 cm above the subniveal ground and ranged in
depth from 9 to 24 cm. The snow pits were dug in a variety
of directions roughly 150 m from the main Horsepool site,
except for snow pit 5 (24 January), which was dug roughly
800 m away from Horsepool. The snow pits were dug wear-
ing clean, nitrate-free gloves using a stainless steel spatula.
For each snow pit, vertical profiles (1 cm depth resolution) of
snow density (ρsnow), temperature, and radiation equivalent
ice grain radii (re)were measured using a Taylor–LaChapelle
snow density kit, a dial stem thermometer, and a laminated
snow grid card with 1 mm grid spacing, respectively. Snow
grains from each distinct snow layer were placed on the snow
grid card and a photograph was taken. The photographs were
projected onto a larger screen and the shortest dimension of
each snow crystal was estimated. The shortest dimension of a
snow grain is the most optically important dimension (Gren-
fell and Warren, 1999), and in this study, it is used to repre-
sent re. For hoar crystals, the smallest dimension is the width
of the crystal wall and for freshly fallen crystals, the smallest
dimension is the radius of the rounded crystal. For each snow
pit, approximately 1 kg of snow was collected at 1 cm depth
intervals and placed into Whirl-Pak plastic bags. The bags
were kept covered while in the field and then immediately
placed into a freezer once back at the Utah State University

(USU) Uintah Basin campus in Vernal, Utah. Section A in the
Supplement shows detailed information on each snow pit.

2.1.3 Optical measurements

The snow from each plastic bag was spooned into a clean
glass beaker and melted in a microwave oven at USU. The
meltwater was transferred to a stainless steel funnel and
passed through a 0.4 µm Nuclepore filter, using an electric
diaphragm vacuum pump to create a partial vacuum in a vol-
umetric flask. The Nuclepore filter collects insoluble light
absorbing impurities (LAI) in snow, including black carbon
(BC) and non-black carbon (non-BC) species, the latter of
which encompass brown carbon, dust, and organics. The vol-
ume of filtrate was measured, which ranged from 40 to 750
ml depending on impurity content. After the Nuclepore filters
dried overnight, the filters were frozen until further analysis
at the University of Washington (UW).

The absorption spectrum of each Nuclepore filter was
measured using an ISSW spectrophotometer (Grenfell et al.,
2011) in the Arctic Snow Laboratory at UW. The Nucle-
pore filter is placed between two integrating spheres lined
with Spectralon material to create a fully diffuse medium. An
Ocean Optics USB-650 spectrophotometer is used to mea-
sure the absorption spectrum in units of optical depth, τ(λ)
(dimensionless, e.g., cm2 cm−2), from λ= 350–1000 nm in
10 nm intervals. A set of standard filters containing known
loadings of black carbon (Fullerene) is used to calibrate the
ISSW spectrophotometer. The spectral absorption measured
by the spectrophotometer for each filter is characterized by
an Ångström exponent (Å), which represents the total absorp-
tion by both BC and non-BC LAI on the filter between two
visible wavelengths. Å is calculated in Eq. (1):

Å(λ1 to λ2)=
ln( τ(λ1)

τ (λ2)
)

ln(λ2
λ1
)
, (1)

where λ1 = 450 nm and λ2 = 600 nm. The λ= 450–600 nm
range is chosen because the ISSW spectrophotometer signal
is most stable over this wavelength range. The total absorp-
tion Ångström exponent on each filter, along with assumed
Ångström exponents for BC (Å= 1) and non-BC (Å= 5), are
used to estimate snow BC concentrations and the fraction
of ultraviolet (λ= 300–350 nm) absorption by non-BC ma-
terial (see Doherty et al., 2010; Grenfell et al., 2011; Zatko et
al., 2013; Zatko and Warren, 2015). Triplicate measurements
were performed for all samples.

Surface upwelling and downwelling irradiance was mea-
sured using a commercial spectral radiometer equipped
with a photodiode array (Metcon GmbH & Co. KG, http:
//www.metcon-us.com). Upwelling and downwelling UV-
A and UV-B were measured with Kipp and Zonen Model
UV-S-AB-T radiometers. Radiometers were placed at 2 m
above ground (one up-facing and one down-facing) and were
cleaned and checked weekly to ensure that the radiometers
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remained directly perpendicular to the ground. Detailed irra-
diance data are provided in the Supplement.

2.1.4 Chemical concentration and nitrate isotopic
measurements

In a laboratory on the USU campus in Vernal, UT, a 50 µL
aliquot of snow meltwater that was passed through the Nu-
clepore filter was used to measure ion (Cl−, Br−, NO−3 ,
SO2−

4 , Na+, NH+4 , K+, Mg+2, Ca+2, oxalate) concentrations
using a Metrohm 761 Compact Ion Chromatograph Ana-
lyzer (Quinn et al., 1998). The nitrate in the remaining fil-
trate was pre-concentrated for isotopic analysis. Nitrate was
pre-concentrated by passing the meltwater through an an-
ion exchange resin (Bio-Rad AG 1-X8) using an electric di-
aphragm pump. The sample anions in the resin were eluted
with 5× 2 mL 1 M sodium chloride (NaCl/Milli-Q water) so-
lution into a 30 mL pre-cleaned sample bottle. This method
has been shown to ensure full recovery of nitrate (Silva et al.,
2000; Frey et al., 2009) The solution was kept frozen in the
dark until analysis in the University of Washington IsoLab
(http://isolab.ess.washington.edu/isolab/).

The denitrifier method (Casciotti et al., 2002; Kaiser et al.,
2007; Sigman et al., 2001) was used to determine the nitro-
gen isotopic signature (δ15N) in each snow sample. Deni-
trifying bacteria, Pseudomonas aureofaciens, convert nitrate
to nitrous oxide (N2O) gas in anaerobic conditions (Cas-
ciotti et al., 2002; Sigman et al., 2001), and N2O is trans-
ported via helium gas through a heated gold tube (800 ◦C),
where it thermally decomposes into O2 and N2. After sepa-
ration by gas chromatography, the O2 and N2 are run through
a Thermo Finnigan™ Delta Plus Advantage isotope ratio
mass spectrometer (IRMS), equipped with a Precon and Gas-
Bench II™. The δ15N values were calculated with respect to
N2 (air) via two international reference materials, USGS32
(δ15N= 180 ‰) and USGS34 (δ15N=−1.8 ‰), with IAEA
(δ15N= 4.7 ‰) as a quality control standard. For many sam-
ples, the NaCl /NO−3 solution was diluted with Milli-Q wa-
ter to obtain the optimal nitrate concentration (200 nmol in
2 mL) for each sample run on the IRMS. Triplicate measure-
ments were performed for all samples. The analytical un-
certainty of δ15N(NO−3 ) (1σ) was 0.75 ‰ based on repeated
measurements of the quality control standard.

Aerosol nitrate was collected throughout the campaign in
12 h intervals. Aerosol nitrate was sampled from an inlet
13 m above ground and drawn through a heated (283 K) pipe,
where it was then collected on a two-stage, multi-jet cas-
cade impactor. The impactor Tedlar films separates aerosols
with diameters less than 2.5 µm from those with diameters
between 2.5 and 12.5 µm. The aerosols were extracted from
the filters and analyzed using ion chromatography, following
methods described in Quinn et al. (2000). Gas-phase nitric
acid was measured using an Acetate HR-ToF-CIMS instru-
ment throughout the campaign with 1 min time resolution, as
described in Yuan et al. (2016).

2.2 Calculations

2.2.1 Snow radiative transfer model

A four-stream, plane-parallel radiative transfer model us-
ing the discrete ordinates method with a δ-M transformation
originally described in Grenfell (1991) was used to calculate
vertical profiles of UV actinic flux in each snow pit. This
model properly treats layers with differing refractive indices
and the 4-stream model produces albedo and absorptivity re-
sults that agree to within 1 % of higher-order models rep-
resentative of snow (Wiscombe, 1977), including DISORT
(Stamnes et al., 1988). Vertical profiles of the ρsnow, re, and
LAI absorption are used to calculate vertical profiles of inher-
ent optical properties (IOPs) in snow at the wavelengths rele-
vant for photochemistry (UV). These wavelength-dependent
IOPs include the bulk extinction coefficient in snow (Kexttot )
and the co-albedo of single scattering (c$eff); see Zatko et
al. (2013) for more details about the IOP calculations. Kexttot

and c$eff, along with observations of downwelling surface
UV irradiance, solar zenith angle, cloud fraction, and soil
albedo (0.1) (Markvart and Castalzer, 2003; Matthias et al.,
2000), are used to calculate 1 cm resolution vertical profiles
of UV actinic flux for each snow pit, following methods de-
scribed in Zatko et al. (2013). The UV actinic flux profiles
are used to calculate depth-dependent photolysis rate con-
stants for nitrate photolysis in snow as described below.

2.2.2 Snow-sourced reactive nitrogen flux calculations

The modeled vertical profiles of actinic flux and observed
snow nitrate concentrations are used to calculate daily-
average fluxes of snow-sourced Nr from each snow pit ac-
cording to Eq. (2).

FNr(z)=

λ1∫
λ0

σNO−3
(λ) ·φ(T ,pH) · I (λ,z)

·
[
NO−3

]
(z)dλ (2)

FNr(z) is the flux of snow-sourced Nr (molec cm−2 s−1)

at 1 cm depth (z) increments in the snow, σ−NO3
is the

wavelength (λ)-dependent absorption crosssection for ni-
trate photolysis (cm2) from Berhanu et al. (2014), φ is
the temperature- and pH-dependent quantum yield for ni-
trate photolysis (φ, molec photon−1) from Chu and Anas-
tasio (2003) (4.6× 10−3 molec photon−1 at T = 267 K), I
is the depth (z)- and λ-dependent actinic flux in the snow
photic zone (photons cm−2 s−1 nm−1), and [NO−3 ](z) is the
observed nitrate concentration (ng g−1) in each snow layer.
Equation (2) is integrated over the UV wavelength region
(λ= 298–345 nm). The snow photic zone is defined as 3
times the e-folding depth of UV actinic flux in snow (Za-
tko et al., 2016). The total flux of Nr to the boundary layer,
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FNr , is calculated according to Eq. (3).

FNr =

z3e∑
z0

FNr(z) (3)

Observed surface downwelling irradiance values for a so-
lar zenith angle of 65◦, the average solar zenith angle from
mid-December to mid-February, are used for calculation of
I (λ,z) in Eq. (3). Therefore the calculated FNr values rep-
resent daily averaged FNr values. It is assumed that all Nr
escapes into the boundary layer due to its low solubility.

2.2.3 Snow photochemistry column model
(TRANSITS)

The flux of snow-sourced Nr from each snow pit is also cal-
culated using a snow photochemistry column model, TRans-
fer of Atmospheric Nitrate Stable Isotopes To the Snow
(TRANSITS)(Erbland et al., 2015). TRANSITS is a multi-
layer, one-dimensional model that simulates nitrate photo-
chemistry in the snow and allows for chemical exchange be-
tween the air and snow and calculates the isotopic compo-
sition of snow nitrate. The model was originally developed
to simulate snow nitrate photolysis and subsequent nitrogen
recycling at the air–snow interface on the eastern Antarc-
tic Plateau (Dome C), and has been adapted to mid-latitude,
shallow-snowpack conditions for this study. The model has
a well-mixed, atmospheric boundary layer with a height of
50 m and a snow compartment containing up to fifty 1 cm
thick layers. In the atmosphere and in each snow layer, the
model solves a general mass-balance equation for nitrate
concentration and isotopic composition (Erbland et al., 2015)
at each time step (1 h).

In TRANSITS, nitrate is deposited to the snow surface
via dry deposition. Nitrate dry deposition is calculated using
the campaign-averaged observed boundary layer mixing ra-
tios for HNO3 (5784 ng m−3) and NO−3 (5777 ng m−3), and
an assumed dry-deposition velocity of 0.03 cm s−1, which
is similar to the dry-deposition velocity used in Edwards
et al. (2013, 2014) (0.02 cm s−1) (see Table 1B in the Sup-
plement for nitrate dry-deposition fluxes). Nitrate diffuses
through the snowpack based on a diffusion coefficient that
is dependent on temperature, pressure, snow specific sur-
face area, snow density, and tortuosity (Crowley et al., 2010;
Durham and Stockburger, 1986; Massman, 1998).

We include only the major channel for the production of
Nr from nitrate photolysis (Reaction R1) in TRANSITS. The
minor channels, Reactions (R2)–(R5), all consist of chem-
istry of the intermediate in nitrate photolysis, i.e., nitrite,
which will photolyze or react rapidly once produced to form
Nr. We assume no export of snow-sourced Nr out of the at-
mospheric box, which is consistent with the low wind speeds
and stable boundary layer conditions observed during the
campaign. In this way there is no net loss of nitrate from
the snow; however, vertical redistribution of snow nitrate

can occur, which would result in distinctive vertical pro-
files of nitrate concentration and δ15N(NO−3 ) in the snow
column. In addition to calculating the flux of snow-sourced
Nr, TRANSITS calculates vertical profiles of nitrate concen-
tration and isotopes (δ15N(NO−3 )) in the snow. To calculate
δ15N(NO−3 ) in the snow, the nitrate photolysis fractionation
factor (15εpho) is calculated at each time step and is depen-
dent upon the spectral distribution of the UV irradiance at
the snow surface (Bernhau et al., 2014; Erbland et al., 2015).
Calculated 15εpho values range from −88 to −35 ‰ between
the snow pits and are constant with snow depth.

In this study, TRANSITS is run at hourly resolution and is
spun up beginning 27 days before the start of the campaign
using available atmospheric chemical (boundary layer, gas-
phase, and aerosol-phase nitrate) and meteorological data
(air, temperature, and pressure). A constant model bound-
ary layer height of 50 m is assumed, which is a rough es-
timate of daily averaged boundary layer heights based on
sodar facsimile data from NOAA. The campaign-averaged
observed boundary layer total nitrate (HNO3+NO−3 ) mix-
ing ratio (11.56 µg m−3) was used to spin up the model. We
collected and measured atmospheric δ15N(NO−3 ) throughout
the campaign using a high-volume air sampler with Nyla-
sorb filters. However, comparison with the aerosol nitrate
(NO−3 ) concentration measurements from the PMEL (Pacific
Marine Environmental Laboratory) two-stage, multi-jet cas-
cade impactor measurements revealed incomplete trapping.
Since non-quantitative collection of nitrate may influence the
observed δ15N(NO−3 ) values, the data were not used in this
study. We instead use surface snow δ15N(NO−3 ) observations
to represent atmospheric δ15N(NO−3 ) (Fig. 1a). The TRAN-
SITS snowpack is initialized by setting the snow height equal
to 50 cm, the snow photic zone to 6 cm (average photic zone
depth for all snow pits), and using the measured snow nitrate
concentration and δ15N(NO−3 ) vertical profiles from the first
snow pit of the campaign (15 January). The snowfall event on
31 January is simulated in the model, but the other smaller
events are not included. As the model evolves, “snapshots”
of the top 25 cm of snow are taken on days corresponding
to each snow pit, and modeled profiles of nitrate concentra-
tion and δ15N(NO−3 ) are compared to observed profiles for
each snow pit. Since vertical profiles of snow δ15N(NO−3 )
are highly sensitive to photochemical-driven redistribution of
Nr in the snowpack (Erbland et al., 2013, 2015), observed
δ15N(NO−3 ) provides a metric to assess model-calculated
FNr .

Atmos. Chem. Phys., 16, 13837–13851, 2016 www.atmos-chem-phys.net/16/13837/2016/



M. Zatko et al.: Snow-sourced reactive nitrogen flux in the Uintah Basin 13843

−5

0

5

10

15

2014

01/15
01/17

01/19
01/21

01/23
01/25

01/27
01/31

02/02
02/04

02/06
02/08

02/10
02/12

b15
N 

(x1
0

 pe
r m

il)
3

(a)

01/29

−5000

0

5000

10 000

15 000

20 000

01
/15

01
/17

01
/19

01
/21

01
/23

01
/25

01
/27

01
/29

01
/31

02
/02

02
/04

02
/06

02
/08

02
/10

02
/12

 N
O 3−  (n

g 
g−

1 )

(b)

Figure 1. (a) Mean surface snow (top 1 cm) δ15N(NO−3 ) ob-
servations (‰) for triplicate measurements from each snow pit
(close circles). The full range of triplicate measured surface
snow δ15N(NO−3 ) for each snow pit is also indicated (vertical
black lines). (b) Surface snow nitrate concentration measurements
(ng g−1) for each snow pit. The uncertainty in the concentration
measurements is 0.75 ‰. The vertical blue lines indicate snowfall
events.

3 Results and discussion

3.1 Observations

3.1.1 Nitrate concentrations and δ15N(NO−
3 ) in the

surface snow

Figure 1a shows mean surface snow δ15N(NO−3 ) values for
each snow pit, which range from −5.5 to 11.1 ‰. The low-
est observed surface snow δ15N(NO−3 ) occurred immediately
after the only significant fresh snowfall event on 30–31 Jan-
uary (−5.5 ‰). All other surface snow samples were over
10 ‰ higher (5.2 to 11.1 ‰).

Figure 1b shows surface snow nitrate concentration mea-
surements for each snow pit, which range from 800 to
18 000 ng g−1. Similar to δ15N(NO−3 ), surface-snow nitrate
concentrations are lowest during the snowfall event on 30–
31 January, with the exception of 11 February when the snow
was rapidly melting. Similarly, boundary layer gas (HNO3)

and aerosol-phase (NO−3 ) nitrate mixing ratios decrease by
a factor of 6 between 30 and 31 January (Fig. S1b in the
Supplement) compared to the rest of the field campaign. In
addition to the gas and aerosol phase nitrate mixing ratios

presented in the Supplement, Veres et al. (2015) also show
decreases in the daily maximum HO2NO2 mixing ratios on
30 and 31 January during UBWOS2014. The decrease in
HO2NO2 mixing ratios corresponds to a sharp decrease in
snow nitrite concentrations (see Fig. 7 in Veres et al., 2015).

Generally, the surface-snow δ15N(NO−3 ) values fall within
the range of primary anthropogenic δ15N values (4–25 ‰)
(Felix and Elliott, 2014; Walters et al., 2015). During snow
events the boundary layer is less stable, possibly allowing for
the transport of nitrate from remote sources outside the basin.
In unpolluted, mid-latitude environments, background atmo-
spheric δ15N(NO−3 ) ranges from −6 to −2 ‰ (Morin et al.,
2009). During the major snowfall event on 30–31 January,
surface-snow δ15N values were ∼ 10 ‰ lower compared to
the rest of the campaign, suggesting that nitrate from be-
yond the basin deposits to the snow surface. Two-day NOAA
HYSPLIT back trajectories (Rolph, 2016; Stein et al., 2015)
show that the air mass on 31 January in the Uintah Basin
originated in the Pacific Ocean, which is distinctly different
from the other air masses that reached the Uintah Basin dur-
ing UBWOS2014 (see Supplement, Figs. S4b–S15b). Uintah
Basin boundary layer air masses typically originated in the
inter-mountain western region and often centered over east-
ern Utah for several days.

3.1.2 Snow depth profiles of snow optical properties,
nitrate concentrations, and δ15N(NO−

3 )

In this section and the following sections, we focus on three
snow pits (22, 31 January, and 4 February) as being represen-
tative of the time period before, during, and after the largest
snow event. The other nine snow pits will not be discussed in
detail, but observed and modeled vertical profiles of chemical
and optical measurements for all 12 snow pits can be found
in the Supplement Sect. A.

Figure 2a and b show vertical profiles of snow optical
properties from an 18 cm deep snow pit dug on 22 January,
which represents typical profiles from the beginning of the
field campaign until before the first snow event. Black car-
bon concentrations (CBC, ng g−1) range from 3 to 100 ng g−1

with the highest concentrations in the top several centime-
ters of snow. Below 3 cm snow depth, CBC decreases dra-
matically. Figure 2b shows the average absorption Ångström
exponent (Å) from λ= 450–600 nm. Over this wavelength
range, the dominant absorber at the snow surface is non-BC
material (Å is nearly 5), and both BC and non-BC contribute
to absorption in sub-surface snow layers (Å ranges from 2 to
2.7). Although BC and non-BC material are both responsi-
ble for the absorption of radiation at λ= 450–600 nm, non-
BC material is responsible for between 99.6 and 100 % of
UV (λ= 300–350 nm) absorption at all depths in this and all
snow pits measured during the field campaign. The top 3 cm
of snow contains the highest concentration of both BC and
non-BC material; we define this layer as the “dusty layer”
and it is represented as a brown shaded region in Fig. 2.
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Figure 2. Snow optical properties measured on 22 January (left),
31 January (middle), and 4 February (right). (top) Vertical profiles
of mean snow black carbon (CBC, ng g−1) measurements and the
full range of CBC measured at each depth (horizontal black lines),
(bottom) mean Ångström exponent (Å, unitless) measurements and
the full range of Å measured at each depth (horizontal black lines).
The brown shaded region represents the dusty layer as defined in
the text.

Figure 2c and d show vertical profiles of snow optical
properties from a 14 cm deep snow pit dug on 31 January.
It snowed 5 cm between the afternoon of 30 January and
the morning of 31 January, and this new snow layer is evi-
dent in Fig. 2c and d because the dusty layer is now located
roughly 5 cm below the snow surface. Figure 2c shows that
CBC ranges from 5 to 100 ng g−1; the maximum CBC value
has been buried deeper in the snow. Figure 2d shows that
Å is close to 1 at the snow surface, indicating that BC mate-
rial dominates visible absorption at the snow surface immedi-
ately following the fresh snowfall event. Figure 2e and f show
vertical profiles of snow optical properties from a 24 cm deep
snow pit dug on 4 February, 5 days after the snow event. In
this snow pit, CBC ranges from 4 to 100 ng g−1 and Å ranges
from 1.7 to 3.4. Figure 2e and f show that the original dusty
layer is still located roughly 5 cm below the snow surface and
that a new dusty layer has formed at the snow surface.

Figure 3a–c show observed vertical profiles of nitrate in
snow from snow pits dug on 22, 31 January, and 4 February.
Prior to the fresh snowfall event, snow nitrate concentrations
were highest at the surface (13 900 ng g−1), and decreased
exponentially in the top 10 cm to a low of 90 ng g−1 at 18 cm
depth (Fig. 3a). Immediately following the fresh snowfall
event, the highest nitrate concentrations (12 200 ng g−1) are
buried below 5 cm of fresh snow within the dusty layer at 5–
7 cm depth. The measured nitrate concentrations in the fresh
snow layer range from 1280 to 4640 ng g−1, which is up to
10 times lower than nitrate concentrations in the dusty layer
(Fig. 3b). Five days after the fresh snowfall event, the highest

Figure 3. Measured (black) and modeled (8= 4.6× 10−3, blue;
8= 0.2, red) vertical profiles of snow nitrate concentration (top)
and δ15N(NO−3 ) (bottom) on 22 January (left), 31 January (center),
and 4 February (right). Modeled δ15N(NO−3 ) profiles are calculated
using variable quantum yields (8= 4.6×10−3, blue;8= 0.2, red;
8= 0, magenta). The brown shaded region represents the dusty
layer.

nitrate concentrations are still located roughly 7 cm below the
snow surface within the dusty layer, but surface nitrate con-
centrations are a factor of 2 higher compared to immediately
after the fresh snowfall event (Fig. 3c).

Figure 3d–f show measured snow δ15N(NO−3 ) in each
of the snow pits, which ranges from −5.5 to 13 ‰. In the
22 January snow pit, measured δ15N(NO−3 ) is highest near
the top and bottom of the snow pit and lowest from 12 to
16 cm depth (Fig. 3d). Following the fresh snowfall event
on 30–31 January, snow δ15N(NO−3 ) values are lowest at the
snow surface and increase with depth in the fresh snow layer
until the top of the dusty layer, below which they decrease
to −3.5 ‰ (Fig. 3e). Five days after the fresh snowfall event,
measured δ15N(NO−3 ) is most enriched in the dusty layer and
at the snow surface (Fig. 3f).

The last snowfall event prior to the start of the campaign
occurred on 19 December and resulted in roughly 1 cm of
snow accumulation (Supplement Fig. S5a). The high con-
centrations of LAI and nitrate in surface snow on 22 January,
combined with the prolonged lack of snowfall, suggest con-
tinual dry-deposition of LAI to the surface snow. We specu-
late that the major source of LAI originates from truck traffic
on the dirt roads in the area of the field site due to high values
of Å (Fig. 2). The factor of 150 and 17 decrease in nitrate and
black carbon concentrations, respectively, from the surface to
18 cm depth on 22 January suggests that minimal nitrate and
LAI are transported (via, e.g., diffusion or meltwater trans-
port) from upper to lower snow layers. Immediately after the
snowfall event on 31 January, nitrate and black carbon con-
centrations are 10 and 3 times lower, respectively, in the sur-
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face snow layers compared to earlier in January, because the
fresh snow has lower concentrations of these species. Even
just five days after the snowfall event on 30–31 January, con-
centrations of nitrate and the Ångström exponent (Å) in the
snow surface layer have increased by a factor of 2, which is
likely due to dry deposition of these species to the surface in
the absence of snowfall.

The δ15N(NO−3 ) profiles in snow do not immediately sug-
gest significant photolysis-driven redistribution of nitrate in
the snowpack, which would result in the lowest values at
the surface, increasing exponentially with depth as observed
in Antarctica (Erbland et al., 2013). Prior to the first snow-
fall event on 30–31 January, the surface dusty layer contains
the highest values of measured δ15N(NO−3 ), which are sim-
ilar to those expected from primary emission of NOx from
anthropogenic sources (Felix and Elliott, 2014; Walters et
al., 2015). We speculate that the depleted δ15N(NO−3 ) values
towards the bottom of the snow pit correspond to remote-
sourced atmospheric nitrate that was deposited during the
large snow event (∼ 20 cm of snow) on 4 December. Emis-
sions of microbial NO from subniveal soil could also lead
to depleted δ15N(NO−3 ) if this NO is oxidized to nitrate in
the snowpack and deposited to the surface of snow grains
before escaping to the atmosphere. However, the depleted
δ15N(NO−3 ) would also likely correspond with enhanced ni-
trate concentrations, which is not observed (Fig. 3a–c). Ad-
ditionally, calculations by Zatko et al. (2013) suggest that the
lifetime of NOx against oxidation to HNO3 in snow inter-
stitial air is long enough so that most NO emitted from soil
microbial activity would likely be transported to the atmo-
spheric boundary layer prior to oxidation. On 31 January,
depleted δ15N(NO−3 ) measurements at the snow surface sug-
gest that there is deposition of nitrate from less polluted re-
gions surrounding the basin during the snow event. The in-
crease in surface snow δ15N(NO−3 ) values after 31 January is
likely due to deposition of primary-sourced nitrate from an-
thropogenic NOx sources in the basin. In the following sec-
tion, we examine the influence of photolysis of snow nitrate
on the profiles of δ15N(NO−3 ) in snow.

3.2 Calculations

3.2.1 Calculations of snow actinic flux profiles and flux
of snow-sourced Nr

Figure 4a–c show calculated vertical profiles of UV actinic
flux normalized to surface downwelling irradiance for the
three snow pits. On 22 January, the normalized actinic flux
ratio is nearly 4 at the snow surface because actinic flux is
calculated by integrating irradiance over a sphere (surface
area of 4πr2) and also because scattering in snow domi-
nates over absorption. In Fig. 4a, the actinic flux decreases
to 2.9 within the top centimeter of snow due mainly to UV
absorption by non-BC in the surface snow layer. The actinic
flux is rapidly extinguished in the dusty layer and contin-
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Figure 4. (a–c) Modeled vertical profiles of UV actinic flux (I ,
photons cm−2 s−1) normalized to surface downwelling irradiance
(Io, photons cm−2 s−1). Also presented is measured total UV Io
(λ= 300–350 nm) for a solar zenith angle of 60◦ on each day.
(d–f) Modeled vertical profiles of snow-sourced Nr fluxes (FNr ,
molec cm−2 s−1) calculated using Eq. (3). Also shown is total FNr ,
which is the depth-integrated FNr over the photic zone. The blue
shaded region represents the snow photic zone.

ues to decrease with increasing snow depth, reaching a value
of 0.01 at 18 cm depth. The blue shaded region represents
the snow photic zone (top 5 cm of snow) on 22 January. The
snow photic zones calculated in this study (4–7 cm) are much
shallower compared to calculated snow photic zones in po-
lar regions (72–207 cm in Antarctica, 6–51 cm in Greenland)
(Zatko et al., 2016) because UV absorption by LAI in the
snow photic zone is at least 5 orders of magnitude higher in
Utah compared to Antarctica and Greenland.

In the snow pits following the fresh snowfall event, the
existence of the dusty layer deeper in the snow influences
the vertical actinic flux profile and increases the photic zone
depth from 5 to 7 cm. The fresh snow at the surface con-
tains less LAI compared to the dusty layer. Therefore, ac-
tinic flux values are higher in the top several centimeters of
snow compared to actinic flux values measured before the
snowfall event, even though re values in the new snow are
a factor of 3.3–8.3 times smaller than the underlying depth
hoar grains. Smaller re values lead to more scattering in the
snow, which increases the probability of absorption by LAI.
Although actinic flux values are highest at the surface on
31 January, Fig. 4b illustrates that UV radiation is rapidly
attenuated below the fresh snow layer because radiation is
forward-scattered into the highly absorbing dusty layer. As
a result, there is roughly an order of magnitude less actinic
flux at 14 cm depth on 31 January compared to 22 January.

The presence of a new dusty layer on the snow surface five
days after the fresh snowfall event does not significantly al-
ter the vertical profile of normalized UV actinic flux, likely
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Figure 5. Modeled diurnal profiles of snow-sourced Nr fluxes (FNr ,
molec cm−2 s−1) calculated using TRANSITS on 22 January (red),
31 January (magenta), and 4 February (blue).

because UV absorption by LAI in the surface layer is at least
five times lower than UV absorption by LAI in the original
dusty layer (surface snow from 22 January snow pit). Sur-
face snow UV albedo is strongly influenced by the presence
of LAI, and Fig. S2b in the Supplement shows that snow UV
albedo is lowest right before the snowfall event on 30–31 Jan-
uary and highest immediately afterwards.

We use these actinic flux profiles and the observed snow
nitrate concentrations (Fig. 3a–c) to calculate daily averaged
fluxes of snow-sourced Nr (molec cm−2 s−1) at 1 cm depth
(z) increments in the snow (FNr(z)), and total fluxes of Nr
to the boundary layer (FNr) according to Eqs. (2) and (3)
for each of the three snow pits (Fig. 4d–f). Prior to the fresh
snowfall event, FNr(z) decreases exponentially with depth in
the photic zone. FNr(z) is highest at the snow surface be-
cause that is where both actinic flux and snow nitrate con-
centrations are highest. Daily average FNr summed over the
snow photic zone is 5.6× 108 molec cm−2 s−1 on 22 Jan-
uary (Fig. 4d and Table 1). Immediately following the fresh
snowfall event, FNr(z) decreases by a factor of 3 at the sur-
face because of the factor of 4 decrease in surface snow ni-
trate concentrations, which is partially compensated for by
the higher UV actinic flux in the top of the snow photic
zone (Fig. 4b). The daily averaged FNr on 31 January is
1.9× 108 molec cm−2 s−1, which is a factor of 3 lower than
total FNr on 22 January. Five days later, FNr(z) has increased
by a factor of 2 at the surface due to the factor of 2 increase
in surface nitrate concentrations (Figs. 3c and 4f). The daily
averaged FNr on 4 February is 3.2× 108 molec cm−2 s−1,
which is a factor of 1.7 higher than total FNr on 31 January.
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Figure 6. Modeled snow-sourced Nr fluxes (molec cm−2 s−1) for
each hour during the campaign from 15 January to 11 February.

3.2.2 Snow photochemistry column model

The snow chemistry column model is used to calculate
the time-dependent flux of snow-sourced Nr (FNr) and the
depth profile of nitrate concentration and δ15N(NO−3 ). Fig-
ure 5 shows the diurnal FNr values on 22, 31 January, and
4 February. The daily averaged snow FNr on 22 January is
6.3× 108 molec cm−2 s−1. Immediately following the snow
event, the daily averaged snow FNr decreases by a factor of
11 compared to 22 January (5.6× 107 molec cm−2 s−1). The
dramatic difference in FNr is due to the differences in nitrate
concentrations in the top several centimeters of snow. Mod-
eled snow nitrate concentrations in the fresh snow layer on
31 January are between 30 and 300 times lower compared
to nitrate concentrations in the dusty layer. Five days after
the snow event, the daily averaged snow FNr has increased
by a factor of 2 (1.2× 108 molec cm−2 s−1) because depo-
sition of nitrate to the snow surface layer enhances surface
nitrate concentrations and thus FNr . Calculated daily average
FNr using observed (Sect. 3.2.1) and modeled (TRANSITS)
snow nitrate concentrations agree within a factor of ∼ 2 (Ta-
ble 1); modeled FNr tends to be lower because modeled snow
nitrate concentrations are lower than observed (Fig. 3).

Figure 6 shows hourly FNr values calculated for the entire
UBWOS2014 campaign using TRANSITS. From the start of
the campaign until the fresh snow event on 31 January, the
daily maximum FNr values increase as surface snow nitrate
concentrations increase due to continual dry-deposition of at-
mospheric nitrate to the snow surface. Immediately after the
snow event on 31 January, daily maximum FNr values are
lowered by more than a factor of 10 due to decreased nitrate
concentrations in the snow photic zone. Following the snow
event, the flux of snow-sourced Nr gradually increases again
due to dry-deposition of nitrate to the surface layer, although
daily maximum FNr values remain lower throughout the re-
mainder of the field campaign compared to values before the
snow event.
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Table 1. Snow photic zone depth and daily averaged modeled FNr calculated using Eq. (3) and the TRANSITS model on 22, 31 January, and
4 February.

Pit date Photic zone Daily-averaged FNr
depth (cm) (molec cm−2 s−1)

Eq. (3) TRANSITS TRANSITS
(φ = 4.6× 10−3) (φ = 0.2)

22 January 5.0 5.6× 108 6.3× 108 2.9× 1010

31 January 7.0 1.9× 108 5.6× 107 2.7× 109

4 February 7.0 3.2× 108 1.2× 108 5.6× 109

Figure 3 shows modeled snow nitrate concentrations and
δ15N(NO−3 ) from TRANSITS compared to the observations.
The general shapes of the modeled and measured vertical
profiles of nitrate concentration are in agreement for all three
snow pits; both modeled and measured nitrate concentrations
are highest in the dusty layer and lowest near the bottom of
the snow pit (Fig. 3a–c). Both the model and the observa-
tions show increased snow nitrate concentrations at the sur-
face following the fresh snowfall event, but the model tends
to underestimate surface snow nitrate concentrations after the
snow event.

Modeled δ15N(NO−3 ) is also within the range of obser-
vations (Fig. 3d–f). Modeled δ15N(NO−3 ) at the top sur-
face snow layer becomes more depleted from the 22 to
31 January snow pit, reflecting the decrease in atmospheric
δ15N(NO−3 ) in the model based on surface snow observations
(Fig. 1a). Without additional snowfall between 31 January
and 4 February, surface snow δ15N(NO−3 ) becomes more
enriched in the model during this time because model at-
mospheric δ15N(NO−3 ) becomes more enriched (Fig. 1a). In
contrast, the observations retain this low δ15N(NO−3 ) at a
depth of ∼ 2 cm until the 11 February snow pit (see Sup-
plement A). The difference between modeled and observed
δ15N(NO−3 ) at 2 cm depth after 31 January may be due to
the redistribution of surface snow by wind, and the fact that
each snow pit was dug in a slightly different location. Blow-
ing snow will bury the surface snow with low δ15N(NO−3 ),
and subsequent atmospheric deposition of more enriched
δ15N(NO−3 ) will occur onto this new, wind-blown snow sur-
face, retaining the light δ15N(NO−3 ) at 2 cm depth. In contrast
to the observations, the model does not account for wind-
blown redistribution of snow and calculates the time evolu-
tion of nitrate concentration and δ15N(NO−3 ) gradients of a
single snow pit.

To examine the sensitivity of snow nitrate to photolysis,
we turn off photolysis of snow nitrate in the model by set-
ting φ = 0. When snow nitrate photolysis is turned off, snow
nitrate concentrations change by less than 0.5 % in all snow
pits, resulting in relatively little sensitivity of modeled snow
nitrate concentration to snow photochemistry because only
this small fraction (< 0.5 %) of nitrate is lost via photolysis

at all depths. Despite the large nitrogen isotope fractionation
(ε=−88 to −35 ‰) resulting from the photolysis of snow
nitrate, the difference in modeled δ15N(NO−3 ) when snow ni-
trate is turned on (φ = 4.6× 10−3) and off (φ = 0) is small
because of the very small fraction of nitrate photolyzed.

In another sensitivity study, we calculate the maximum
possible FNr in the Uintah Basin by increasing the value of φ
until modeled snow δ15N(NO−3 ) falls outside the full range
of observations. Above φ = 0.2, there is significant disagree-
ment (when the maximum change in δ15N(NO−3 ) is > 1σ of
the mean δ15N(NO−3 ) in all snow pits) between modeled and
measured δ15N(NO−3 ) values. Using φ = 0.2 results in more
enriched δ15N(NO−3 ) at depth due to enhanced photolytic
loss, and more depleted δ15N(NO−3 ) at the snow surface due
to the deposition of isotopically light snow-sourced nitrate.
Using φ = 0.2 results in a maximum possible FNr at least
45 times larger than when using φ = 4.6×10−3 for all snow
pits (see Table 1).

4 Impact of snow-sourced Nr on the boundary layer
reactive nitrogen budget

4.1 NOx

We first assume that all Nr is NOx and use FNr values cal-
culated using the snow photochemistry column model to es-
timate the impact of FNOx on the NOx budget in the Uin-
tah Basin. Using the best estimate for the quantum yield of
nitrate photolysis (φ = 4.6× 10−3), the modeled daily av-
eraged flux of snow-sourced NOx ranges from 5.6× 107

to 7.2× 108 molec cm−2 s−1 and the maximum FNr value
is 3.1× 109 molec cm−2 s−1 for the entire campaign (Sup-
plement Table S4b). The top-down NOx emission inven-
tory for oil, gas, and all other sources, excluding the Bo-
nanza power plant in Duchesne and Uintah counties, is 6.5×
106 kg NOx year−1 (Ahmadov et al., 2015). The power plant
is excluded because its emissions occur above the bound-
ary layer due to the plume’s positive buoyancy. Assuming a
constant NOx emission rate and using the area of Duchesne
(8433 km2) and Uintah counties (11 658 km2), the top-down
NOx emission estimate for the Uintah and Duchesne coun-
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ties is 1.2× 1012 molec cm−2 s−1. The emission of primary
NOx in these two counties is thus at least 300 times higher
than the estimated snow NOx emissions, implying that snow-
sourced NOx fluxes likely do not influence the NOx bound-
ary layer budget in the highly polluted Uintah Basin. If the
upper limit of φ = 0.2 is used, snow-sourced NOx emissions
are still at least seven times smaller than primary NOx emis-
sions. Although reactive nitrogen is likely being emitted from
the snow into the boundary layer, the snow-sourced NOx sig-
nal is swamped by emissions from primary anthropogenic
sources in the Uintah Basin.

4.2 HONO

Only the major channel for snow nitrate photolysis (Reac-
tion R1) is simulated in the TRANSITS model, although ni-
trate can also photolyze via Reaction (R2) and form both
NOx and HONO (Reactions R3–R5). The surface snow pH
ranged from 2 to 4 during the campaign (see Fig. S3a in the
Supplement), which is low enough to enable direct volatiliza-
tion of HONO from the snow. We estimate the maximum
possible influence of the snow-photolytic source of bound-
ary layer HONO by assuming that all snow-sourced Nr is
in the form of HONO. If we assume that the campaign-
maximum FNr value (3.1×109 molec cm−2 s−1) is all HONO
that escapes from the snow into the boundary layer, with
a layer height of 50 m and a lifetime of HONO of 18 min
(at solar noon) (Edwards et al., 2013), snow nitrate photol-
ysis would contribute a maximum of 25 pptv of HONO to
the boundary layer at solar noon. The modeled and observed
Uintah Basin boundary layer HONO mixing ratios presented
in Edwards et al. (2014) range from ∼ 20 pptv at night to
up to 150 pptv during the day, which suggests that the day-
time fluxes of reactive nitrogen are not a significant source
of HONO to the boundary layer compared to other HONO
sources in the basin. Our estimated maximum HONO flux
is comparable to snow-sourced HONO fluxes measured at
another polluted, mid-latitude location (Paris, France), esti-
mates of which ranged from 0.7 to 3.1×1010 molec cm−2 s−1

(assuming a snow density of 0.36 g cm−3 and snow photic
zone depth of 6 cm) (Michoud et al., 2015). If the upper
limit of φ = 0.2 is used (campaign-maximum FNr = 1.4×
1011 molec cm−2 s−1), the maximum boundary layer HONO
mixing ratio calculated using this approach is 1.1 ppbv at so-
lar noon, which would significantly impact boundary layer
HONO mixing ratios in the Uintah Basin. Given that HONO
is thought to be only a minor fraction of total Nr emitted from
snow (Beine et al., 2008), we consider this to be an overesti-
mate.

5 Conclusions

This study estimates the influence of snow nitrate photoly-
sis on the boundary layer reactive nitrogen (Nr) budget in

the Uintah Basin, which is a region with heavy oil and nat-
ural gas extraction processes. Observations of snow optical
properties, including ultraviolet (UV) light-absorbing impu-
rities (e.g., black carbon, dust, and organics), radiation equiv-
alent ice grain radii, and snow density from 12 snow pits
measured during the Uintah Basin Winter Ozone Study (UB-
WOS) 2014 are incorporated into a snowpack radiative trans-
fer model to calculate vertical profiles of UV actinic flux in
12 snow pits dug during the campaign. The calculated UV
actinic flux profiles along with measurements of nitrate con-
centration are used to calculate snow-sourced Nr fluxes as-
sociated with snow nitrate photolysis using both a simple
Eq. (3) and a more complex snow photochemistry column
model, which yield similar results. Snow nitrate photolysis
in the column model is constrained by 1 cm depth-resolved
observations of δ15N(NO−3 ) in the snow pits, which is highly
sensitive to UV photolysis (Erbland et al., 2015).

The daily averaged flux snow-sourced Nr (FNr) to
the boundary layer ranges from 5.6× 107 to 7.2×
108 molec cm−2 s−1 and the modeled campaign-maximum
FNr is 3.1×109 molec cm−2 s−1. The top-down emission es-
timate of primary NOx in Uintah and Duchesne counties re-
ported in Ahmadov et al. (2015) is at least 300 times higher
than estimated snow NOx emissions, assuming that all Nr is
emitted as NOx . This suggests that snow-sourced NOx fluxes
likely have little influence on the boundary layer NOx bud-
get in the highly polluted Uintah Basin. Assuming that all
Nr is emitted as HONO also suggests that the snow-sourced
reactive nitrogen fluxes associated with snow nitrate photol-
ysis do not significantly contribute to boundary layer HONO
mixing ratios in the Uintah Basin. The relative importance
of the flux of NOx and HONO will influence the impact of
the recycling of Nr in snow on the chemistry of the boundary
layer in snow-covered regions but is unknown. Knowledge
of the chemical speciation of snow-source Nr is required for
a better understanding of the full impact of snow on local
oxidant budgets. However, in the Uintah Basin, we conclude
that air quality models can safely neglect the recycling of re-
active nitrogen in snow when identifying the most effective
strategies for reducing wintertime ozone abundances.

6 Data availability

Our field and laboratory measurements are permanently
archived in the University of Washington Libraries
ResearchWorks Archive: https://digital.lib.washington.edu/
researchworks/handle/1773/37311.

The Supplement related to this article is available online
at doi:10.5194/acp-16-13837-2016-supplement.
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